В параметрических преобразователях выходной величиной является. Измерительные преобразователи. б) емкостных преобразователей

Общие сведения.

В параметрических преобразователях выходной величиной является параметр электрической цепи . При использовании параметрических преобразователей необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

Реостатные преобразователи.

Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины - перемещения. Реостатный преобразователь представляет собой реостат, щетка (подвижный контакт) которого перемещается под воздействием измеряемой неэлектрической величины. На рис. 11-5 схематически показаны некоторые варианты конструкций реостатных преобразователей для углового (рис. 11-5, а) и линейного (рис. 11-5, б и в) перемещений. Преобразователь состоит из обмотки, нанесенной на каркас, и щетки. Для изготовления каркасов применяются диэлектрики и металлы. Проволоку для обмотки выполняют из сплавов (сплав платины с иридием, константан, нихром и фехраль). Для обмотки обычно используют изолированный провод. После изготовления обмотки изоляцию провода счищают в местах соприкосновения его со щеткой. Щетку преобразователя выполняют либо из проволок, либо из плоских пружинящих полосок, причем

Рис. 11-5. Реостатные преобразователи для угловых (а), линейных (б) перемещений и для функционального преобразования линейных перемещений (в)

используют как чистые металлы (платина, серебро), так и сплавы (платина с иридием, фосфористая бронза и т. д.).

Габариты преобразователя определяются значением измеряемого перемещения, сопротивлением обмотки и мощностью, выделяемой в обмотке.

Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный характер преобразования часто достигается профилированием каркаса преобразователя (рис. 11-5, в).

В рассматриваемых реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, так как сопротивление изменяется скачками, равными сопротивлению одного витка. Это вызывает погрешность, максимальное значение которой где максимальное сопротивление одного витка; - полное сопротивление преобразователя. Иногда применяют реохордные преобразователи, в которых щетка скользит вдоль оси проволоки. У этих преобразователей отсутствует указанная погрешность. Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т.

К достоинствам преобразователей относится возможность получения высокой точности преобразования, значительных по уровню выходных сигналов и относительная простота конструкции. Недостатки - наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения.

Применяют реостатные преобразователи для преобразования сравнительно больших перемещений и других неэлектрических величин (усилия, давления и т. п.), которые могут быть преобразованы в перемещение.

Тензочувствительные преобразователи (тензорезисторы).

В основу работы преобразователей положен тензоэффект, заключающийся в изменении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Рис. 11-6. Тензочувствительный проволочный преобразователь

Если проволоку подвергнуть механическому воздействию, например растяжению, то сопротивление ее изменится. Относительное изменение сопротивления проволоки где - коэффициент тензочувствительности; - относительная деформация проволоки.

Изменение сопротивления проволоки при механическом воздействии на нее объясняется изменением геометрических размеров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные преобразователи, широко применяемые в настоящее время (рис. 11-6), представляют собой тонкую зигзагообразно уложенную и приклеенную к полоске бумаги (подложке проволоку 2 (проволочную решетку). Преобразователь включают в цепь с помощью привариваемых или припаиваемых выводов 3. Преобразователь наклеивают на поверхность исследуемой детали так, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки.

Для изготовления преобразователей применяют главным образом константановую проволоку диаметром мм Константан обладает малым температурным коэффициентом электрического сопротивления, что очень важно, так как изменение сопротивления преобразователей при деформациях, например, стальных деталей соизмеримо с изменением сопротивления преобразователя при изменении температуры. В качестве подложки используют тонкую мм) бумагу, а также пленку лака или клея, а при высоких температурах - слой цемента.

Применяют также фольговые преобразователи, у которых вместо проволоки используется фольга и пленочные тензорезисторы, получаемые путем возгонки тензочувствительного материала с последующим осаждением его на подложку.

Для наклеивания проволоки на подложку и всего преобразователя на деталь применяют клеи (раствор целлулоида в ацетоне, клей бакелитовый и т. д.). Для высоких температур (выше используют жаростойкие цементы, кремнийорганические лаки и клеи и т. п.

Преобразователи выполняют различных размеров в зависимости от назначения. Наиболее часто используют преобразователи с длиной решетки (базой) от 5 до 50 мм, имеющие сопротивление 30-500 Ом.

Изменение температуры вызывает изменение характеристики преобразования тензорезисторов, что объясняется температурной зависимостью сопротивления преобразователя и различием температурных коэффициентов линейного расширения материала тензорезистора и исследуемой детали. Влияние температуры устраняется обычно путем применения соответствующих методов температурной компенсации.

Наклеенный тензочувствительный преобразователь невозможно снять с одной детали и наклеить на другую. Поэтому для определения характеристик преобразования (коэффициента прибегают к выборочной градуировке преобразователей, что дает значение коэффициента с погрешностью Методы определения характеристик тензорезисторов регламентированы стандартом. Достоинства этих преобразователей - линейность статической характеристики преобразования, малые габариты и масса, простота конструкции. Недостатком их является малая чувствительность.

В тех случаях когда требуется высокая чувствительность, находят применение тензочувствительные преобразователи, выполненные в виде полосок из полупроводникового материала. Коэффициент таких преобразователей достигает нескольких сотен. Однако воспроизводимость характеристик полупроводниковых преобразователей плохая. В настоящее время серийно выпускают интегральные полупроводниковые тензорезисторы, образующие мост или полумост с элементами термокомпенсации.

В качестве измерительных цепей для тензорезисторов используют равновесные и неравновесные мосты. Тензорезисторы применяют для измерения деформаций и других неэлектрических величин: усилий, давлений, моментов и т. п.

Термочувствительные преобразователи (терморезисторы).

Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или полупроводников от температуры.

Между терморезистором и исследуемой средой в процессе измерения происходит теплообмен. Так как терморезистор при этом включен в электрическую цепь, с помощью которой производят измерение его сопротивления, то по нему протекает ток, выделяющий в нем теплоту. Теплообмен терморезистора со средой происходит из-за теплопроводности среды и конвекции в ней, теплопроводности самого терморезистора и арматуры, к которой он крепится, и, наконец, из-за излучения. Интенсивность

Рис. 11-7. Устройство (а) и внешний вид арматуры (б) платинового терморезистора

теплообмена, а следовательно, и температура терморезистора зависят от его геометрических размеров и формы, от конструкции защитной арматуры, от состава, плотности, теплопроводности, вязкости и других физических свойств газовой или жидкой среды, окружающей терморезистор, а также от температуры и скорости перемещения среды.

Таким образом, зависимость температуры, а следовательно, и сопротивления терморезистора от перечисленных выше факторов может быть использована для измерения различных неэлектрических величин, характеризующих газовую или жидкую среду. При конструировании преобразователя стремятся к тому, чтобы теплообмен терморезистора со средой в основном определялся измеряемой неэлектрической величиной.

По режиму работы терморезисторы бывают перегревные и без преднамеренного перегрева. В преобразователях без перегрева ток, проходящий через терморезистор, практически не вызывает перегрева, и температуру последнего определяет температура среды; эти преобразователи применяют для измерения температуры. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Перегревные преобразователи используют для измерения скорости, плотности, состава среды и т. д. Так как на перегревные терморезисторы влияет температура среды, обычно применяют схемные методы компенсации этого влияния.

Для измерения температуры наиболее распространены терморезисторы, выполненные из платиновой или медной проволоки.

Стандартные платиновые терморезисторы применяют для измерения температуры в диапазоне от -260 до медные - в диапазоне от -200 до +200 °С (ГОСТ 6651-78).

Низкотемпературные платиновые терморезисторы (ГОСТ 12877-76) применяют для измерения температуры в пределах от -261 до

На рис. 11-7, а показано устройство платинового терморезистора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно. К концам спирали припаивают выводы используемые для включения терморезистора в измерительную цепь. Крепление выводов и герметизацию керамической трубки производят глазурью Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изолятора и фиксатора спирали. Порошок безводного оксида алюминия, имеющий высокую теплопроводность и малую теплоемкость, обеспечивает хорошую передачу теплоты и малую инерционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его помещают в защитную арматуру (рис. 11-7, б) из нержавеющей стали.

Начальные сопротивления (при платиновых стандартных терморезисторов равны 1, 5, 10, 46, 50, 100 и 500 Ом, медных и 100 Ом.

Допустимое значение тока, протекающего по терморезистору при включении его в измерительную цепь, должно быть таким, чтобы изменение сопротивления терморезистора при нагреве не превышало начального сопротивления.

Статические характеристики преобразования в виде таблиц (градуировочных) и допускаемые отклонения этих характеристик для стандартных терморезисторов приведены в ГОСТ 6651-78.

Аналитически зависимость сопротивления от температуры для платиновых терморезисторов выражают следующими уравнениями:

где - сопротивление при

Для медного терморезистора

Помимо платины и меди, иногда для изготовления терморезисторов используют никель.

Для измерения температуры применяют также полупроводниковые терморезисторы (термисторы) различных типов, которые характеризуются большей чувствительностью (ТКС

термисторов отрицательный и при в 10-15 раз превышает меди и платины) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов - плохая воспроизводимость и нелинейность характеристики преобразования:

где и - сопротивления термистора при температурах Т и То - начальная температура рабочего диапазона; В - коэффициент.

Термисторы используют в диапазоне температур от -60 до

Для измерения температуры от -80 до применяют термодиоды и термотранзисторы, у которых под действием температуры изменяется сопротивление р-п-перехода и падение напряжения на этом переходе. Чувствительность термотранзистора по напряжению что значительно превышает чувствительность стандартных термопар (см. табл. 11-1). Эти преобразователи обычно включают в мостовые цепи и цепи в виде делителей напряжения.

Достоинствами термодиодов и термотранзисторов являются высокая чувствительность, малые размеры и малая инерционность, высокая надежность и дешевизна; недостатками - узкий температурный диапазон и плохая воспроизводимость статической характеристики преобразования. Влияние последнего недостатка уменьшают применением специальных цепей.

Тепловую инерционность стандартных терморезисторов согласно ГОСТ 6651-78 характеризуют показателем тепловой инерции определяемым как время, необходимое для того, чтобы при внесении преобразователя в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое она имела в момент наступления регулярного теплового режима. Показатель тепловой инерции определяют по той части кривой переходного теплового процесса преобразователя, которая соответствует регулярному режиму, т. е. имеет экспоненциальный характер (в полулогарифмическом масштабе - прямая линия). Значение для различных типов стандартных преобразователей находится в пределах от нескольких десятков секунд до нескольких минут.

Когда необходимы малоинерционные терморезисторы, для их изготовления используют очень тонкий провод (микропровод) или применяют термисторы малого объема (бусинковые) или термотранзисторы.

Рис. 11-8. Преобразователь газоанализатора, основанный на принципе измерения теплопроводности

Рис. 11-9. Зависимость теплопроводности газа от давления

Терморезисторы применяют в приборах для анализа газовых смесей. Многие газовые смеси отличаются друг от друга и от воздуха теплопроводностью. Теплопроводность смеси, состоящей из двух газов, не вступающих в реакцию друг с другом, где а- процентное содержание первого (искомого) компонента; теплопроводность, соответственно, первого и второго компонентов. Таким образом, измеряя теплопроводность газовой смеси можно судить о процентном содержании искомого компонента (при

В приборах для газового анализа - газоанализаторах - для измерения теплопроводности используют перегревный платиновый терморезистор 1 (рис. 11-8), помещенный в камеру 2 с анализируемым газом. Конструкция терморезистора, арматуры и камеры, а также значение нагревающего тока выбирают такими, чтобы теплообмен со средой осуществлялся в основном за счет теплопроводности газозой среды.

Для исключения влияния внешней температуры, кроме рабочей, используют компенсационную камеру с терморезистором, заполненную постоянным по составу газом. Обе камеры выполняют в виде единого блока, что обеспечивает камерам одинаковые температурные условия. Рабочий и компенсационный терморезисторы при измерениях включают в соседние плечи моста, что приводит к компенсации влияния температуры.

Терморезисторы применяют в приборах для измерения степени разреженности. На рис. 11-9 показана зависимость теплопроводности газа, находящегося между телами Л и Б, от его давления. Характер этой зависимости объясняют следующим образом.

Теплопроводность газа где - коэффициент пропорциональности; плотность газа; средняя длина пути свободного пробега молекул. В свою очередь, где и кг - коэффициенты пропорциональности; число молекул в единице объема. Следовательно, при давлениях Газа, близких к атмосферному,

При разрежении газа, когда длина пути свободного пробега молекул теоретически станет равной расстоянию между телами Ли Б или больше него, практически длина пути свободного пробега молекул будет ограничена расстоянием т. е. в этом случае и теплопроводность газа

Таким образом, теплопроводность газа становится зависимой от числа молекул в единице объема, т. е. от давления (степени разреженности). Зависимость теплопроводности газа от давления используют в вакуумметрах - приборах для измерения степени разреженности.

Для измерения теплопроводности в вакуумметрах используют металлические (платиновые) и полупроводниковые терморезисторы, помещаемые в стеклянный или металлический баллон, который соединяют с контролируемой средой.

Терморезисторы применяют в приборах для измерения скорости газового потока - термоанемометрах. Установившаяся температура перегрезного терморезистора, помещенного на пути газового потока, зависит от скорости потока. В этом случае основным путем теплообмена терморезистора со средой будет конвекция (принудительная). Изменение сопротивления терморезистора вследствие уноса теплоты с его поверхности движущейся средой функционально связано со скоростью среды.

Конструкцию и тип терморезистора, арматуру и нагревающий терморезистор ток выбирают такими, чтобы были снижены или исключены все пути теплообмена, кроме конвективного.

Достоинствами термоанемометров являются высокая чувствительность и быстродействие. Эти приборы позволяют измерять скорости от 1 до 100-200 м/с при использовании измерительной цепи, с помощью которой температура терморезистора автоматически поддерживается почти неизменной.

Электролитические преобразователи.

Электролитические преобразователи основаны на зависимости электрического сопротивления раствора электролита от его концентрации. В основном их применяют для измерения концентраций растворов.

На рис. 11-10 для примера показаны графики зависимостей удельной электрической проводимости у некоторых растворов электролитов от концентрации с растворенного вещества. Из этого рисунка следует, что в определенном диапазоне изменения концентрации зависимость электрической проводимости от

Рис. 11-10. Зависимость удельной электрической проводимости растворов электролитов от концентрации растворенного вещества

Рис. 11-11. Лабораторный электролитический преобразователь

концентрации однозначна и может быть использована для определения с.

Преобразователь, применяемый в лабораторных условиях для измерения концентрации, представляет собой сосуд с двумя электродами (электролитическая ячейка) (рис. 11-11). Для промышленных непрерывных измерений преобразователи выполняют проточными, причем часто используют конструкции, в которых роль второго электрода играют стенки сосуда (металлические).

Электрическая проводимость растворов зависит от температуры. В первом приближении эту зависимость выражают уравнением где - электрическая проводимость при начальной температуре ; Р - температурный коэффициент электрической проводимости (для растворов кислот, оснований и солей

Таким образом, при использовании электролитических преобразователей необходимо устранять влияние температуры. Эту задачу решают путем стабилизации температуры раствора с помощью холодильника (нагревателя) или применения цепей температурной компенсации с медными терморезисторами, так как температурные коэффициенты проводимости меди и растворов электролитов имеют противоположные знаки.

При прохождении постоянного тока через преобразователь происходит электролиз раствора, что приводит к искажению результатов измерения. Поэтому измерения сопротивления раствора обычно проводят на переменном токе (700-1000 Гц), чаще всего с помощью мостовых цепей.

Индуктивные преобразователи.

Принцип действия преобразователей основан на зависимости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения,

Рис. 11-12. Магнитопровод с зазорами и двумя обмотками

геометрических размеров и магнитного состояния элементов их магнитной цепи.

Индуктивность обмотки, расположенной на магнитопроводе (рис. 11-12), где - магнитное сопротивление магнитопровода; - число витков обмотки.

Взаимная индуктивность двух обмоток, расположенных на том же магнитопроводе, где - число витков первой и второй обмоток.

Магнитное сопротивление определяется выражением

где - активная составляющая магнитного сопротивления (рассеиванием магнитного потока пренебрегаем); - соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость участка магнитопровода; - магнитная постоянная; - длина воздушного зазора; 5 - площадь поперечного сечения воздушного участка магнитопровода; - реактивная составляющая магнитного сопротивления; Р - потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом; - угловая частота; Ф - магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, воздействуя на длину сечение воздушного участка магнитопровода на потери мощности в магнитопроводе и другими путями. Этого можно достичь, например, перемещением подвижного сердечника (якоря) 1 (рис. 11-12) относительно неподвижного 2, введением немагнитной металлической пластины 3 в воздушный зазор и т.

На рис. 11-13 схематически показаны различные типы индуктивных преобразователей. Индуктивный преобразователь (рис. 11 -13, а) с переменной длиной воздушного зазора характеризуется нелинейной зависимостью Такой преобразователь обычно применяют при перемещениях якоря на мм. Значительно меньшей чувствительностью, но линейной зависимостью отличаются преобразователи с переменным сечением воздушного зазора (рис. 11-13, б). Эти преобразователи используют при перемещениях до 10-15 мм.

Рис. 11-13. Индуктивные преобразователи с изменяющейся длиной зазора (а), с изменяющимся сечением зазора (б), дифференциальный (в), дифференциальный трансформаторный дифференциальный трансформаторный с разомкнутой магнитной цепью и магнитоупругий

Якорь в индуктивном преобразователе испытывает усилие (нежелательное) притяжения со стороны электромагнита

где - энергия магнитного поля; - индуктивность преобразователя; - ток, проходящий через обмотку преобразователя.

Широко распространены индуктивные дифференциальные преобразователи (рис. 11-13, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис. 11-13, г показана схема включения дифференциального индуктивного преобразователя, у которого выходными величинами являются взаимные индуктивности. Такие преобразователи называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симметричном положении якоря относительно электромагнитов ЭДС на

Рис. 11-14. Устройство (а) и вид печатной обмотки (б) индуктосина

выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравнительно больших перемещений (до 50-100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис. 11-13, (9).

Применяют трансформаторные преобразователи угла поворота, состоящие из неподвижного статора и подвижного ротора с обмотками. Обмотку статора питают переменным током. Поворот ротора вызывает изменение значения и фазы наводимой в его обмотке ЭДС. При повороте ротора на угол - число полюсов статора) фаза этой ЭДС изменяется на 180°. Такие преобразователи используют при измерении больших угловых перемещений.

Для измерения малых угловых перемещений используют индуктосины (рис. 11-14). Ротор 1 и статор индуктосина снабжают печатными обмотками 3, имеющими вид радиального растра. Принцип действия индуктосина аналогичен описанному выше. Нанесением обмоток печатным способом удается получить большое число полюсных шагов обмотки, что обеспечивает высокую чувствительность преобразователя к изменению угла поворота.

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что повлечет за собой изменение индуктивности и взаимной индуктивности М обмоток. На этом принципе основаны магнитоупругие преобразователи (рис. 11-13, е).

Конструкция преобразователя определяется диапазоном измеряемого перемещения. Габариты преобразователя выбирают исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) цепи, а также компенсационная (в автоматических приборах) цепь для дифференциальных трансформаторных преобразователей.

Индуктивные преобразователи используют для преобразования перемещения и других неэлектрических величин, которые

Рис. 11-15. Емкостные преобразователи с изменяющимся расстоянием между пластинами (а), дифференциальный (б), дифференциальный с переменной активной площадью пластин (в) и с изменяющейся диэлектрической проницаемостью среды между пластинами (г)

могут быть преобразованы в перемещение (усилие, давление, момент и т. д.).

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Недостаток их - обратное воздействие преобразователя на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи.

Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость где - электрическая постоянная; - относительная диэлектрическая проницаемость среды между обкладками; - активная площадь обкладок; - расстояние между обкладками. Из выражения для емкости видно, что преобразователь может быть построен с использованием зависимостей

На рис. 11-15 схематически показано устройство различных емкостных преобразователей. Преобразователь на рис. 11-15, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой величины х относительно неподвижной пластины. Статическая характеристика преобразования нелинейна. Чувствительность преобразователя возрастает с уменьшением расстояния Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Малое рабочее перемещение пластин приводит к погрешности от изменения расстояния между пластинами при колебаниях температуры. Выбором размеров деталей преобразователя и материалов добиваются снижения этой погрешности.

В емкостных преобразователях возникает усилие (нежелательное) притяжения между пластинами

где - энергия электрического поля; - соответственно напряжение и емкость между пластинами.

Применяют также дифференциальные преобразователи (рис. 11-15, б), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины этих преобразователей одновременно изменяются емкости На рис. 11-15, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин. Такой преобразователь используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразования путем профилирования пластин.

Преобразователи с использованием зависимости применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т. п. Для примера (рис. 11-15, г) дано устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразователей применяют мостовые цепи и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на перемещения порядка 10-7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мегагерц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтирующее действие сопротивления изоляции.

Рис. 11-16. Схема ионизационного преобразователя

Рис. 11-17. Вольт-амперная характеристика ионизационного преобразователя

включения и необходимость в специальных источниках питания повышенной частоты.

Ионизационные преобразователи.

Преобразователи основаны на явлении ионизации газа или люминесценции некоторых веществ под действием ионизирующего излучения.

Если камеру, содержащую газ, подвергнуть облучению, например, -лучами, то между электродами, включенными в электрическую цепь (рис. 11-16), потечет ток. Этот ток зависит от приложенного к электродам напряжения, от плотности и состава газовой среды, размера камеры и электродов, свойств и интенсивности ионизирующего излучения и т. д. Эти зависимости используют для измерения различных неэлектрических величин: плотности и состава газовой среды, геометрических размеров деталей и т. д.

В качестве ионизирующих агентов применяют и у-лучи радиоактивных веществ, значительно реже - рентгеновские лучи и нейтронное излучение.

Для измерения степени ионизации используют преобразователи - ионизационные камеры и ионизационные счетчики, действие которых соответствует различным участкам вольт-амперной характеристики газового промежутка между двумя электродами. На рис. 11-17 показана зависимость тока I в камере (рис. 11-16) с постоянным составом газа от приложенного напряжения и интенсивности излучения На участке Л характеристики ток увеличивается прямо пропорционально напряжению, затем рост его замедляется и на участке Б достигает насыщения. Это указывает на то, что все ионы, образующиеся в камере, достигают электродов. На участке Б ионизационный ток снова начинает расти, что вызывается вторичной ионизацией при ударениях первичных электронов и ионов о нейтральные молекулы. При дальнейшем увеличении напряжения (участок Г) ионизационный перестает зависеть от первоначальной ионизации и наступает

непрерывный разряд (участок Д), который уже не зависит от воздействия радиоактивного излучения.

Участки А и Б вольт-амперной характеристики описывают действие ионизационных камер, а участки Б и Г - ионизационных счетчиков. Кроме ионизационных камер и счетчиков, в качестве ионизационных преобразователей применяют сцинтилляционные (люминесцентные) счетчики. Принцип действия этих счетчиков основан на возникновении в некоторых веществах - фосфорах (активированные серебром сернистый цинк, сернистый кадмий и др.) - под действием радиоактивных излучений световых вспышек (сцинтилляций), которые в счетчиках регистрируются фотоумножителями. Яркость этих вспышек, а следовательно, и ток фотоумножителя определяются радиоактивным излучением.

Выбор типа ионизационного преобразователя зависит в значительной мере от ионизирующего излучения.

Альфа-лучи (ядра атома гелия) обладают большой ионизирующей способностью, но имеют малую проникающую способность. В твердых телах а-лучи поглощаются в очень тонких слоях (еди-ницы-десятки микрометров). Поэтому при использовании а-лучей а-излучатель помещают внутрь преобразователя.

Бета-лучи представляют собой поток электронов (позитронов); они обладают значительно меньшей ионизирующей способностью, чем а-лучи, но зато имеют более высокую проникающую способность. Длина пробега р-частиц в твердых телах достигает нескольких миллиметров. Поэтому -излучатель может располагаться как внутри, так и вне преобразователя.

Изменение расстояния между электродами, площади перекрытия электродов или положения источника радиоактивного -излучения относительно ионизационных камер или счетчиков сказывается на значении ионизационного тока. Поэтому указанные зависимости используют для измерения различных механических и геометрических величин.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения.

Для регистрации отдельных частиц, а также измерения небольших -излучений широко применяют так называемые газоразрядные счетчики, действие которых описывают участки В и Г вольт-амперной характеристики. Устройство газоразрядного счетчика показано на рис. 11-19. Счетчик состоит из металлического цилиндра 1, внутри которого натянута тонкая вольфрамовая проволока 2. Оба эти электрода помещены в стеклянный цилиндр 3 с инертным газом. При ионизации газа в цепи счетчика появляются импульсы тока, число которых подсчитывается.

В качестве источников и у-излучений обычно используют радиоактивные изотопы. Источники излучения, применяемые в измерительной технике, должны иметь значительный период полураспада и достаточную энергию излучения (кобальт-60, стронций-90, плутоний-239 и др.).

Основное достоинство приборов, использующих ионизирующие излучения, заключается в возможности бесконтактных измерений, что имеет большое значение, например, при измерениях в агрессивных или взрывоопасных средах, а также в средах, находящихся под большим давлением или имеющих высокую температуру. Основной недостаток этих приборов - необходимость применения биологической защиты при высокой активности источника излучения.


Преобразователи физических величин в электрический сигнал - один из основных элементов автоматических си­стем контроля и управления измерительных и регулирующих при­боров, во многом определяющий их эксплуатационные характе­ристики, например степень автоматизации, точность, быстродей­ствие. Разработка многофункциональных преобразователей (МФП) основывается на достижениях в области автоматики, вычислительной техники, радиоэлектроники, инфор­мационно-измерительной техники, метрологии.

Канал передачи информации о физической величине состоит из последовательно включенных звеньев, осуществляющих пре­образование ее в электрический сигнал, функциональное преобра­зование электрического сигнала, масштабное преобразование, преобразование к виду, пригодному для дальнейшего использова­ния (индикации, измерения, регистрации, документирования, фор­мирования управляющего воздействия). Совокупность последо­вательно включенных звеньев, осуществляющих перечисленные операции, - преобразователь физической величины. В соответст­вии с этим определением обобщенная структурная схема преобра­зователя может быть представлена (рис. 1), состоящей из чувствительного элемента ЧЭ, первичного преобразователя ПП, функционального преобразова­теля ФП, масштабного преобразователя МП, вторичного (выход­ного) преобразователя ВП.

Рис. 1. Обобщенная структурная схема преобразователя

Функциональный и масштабный преобразователи часто назы­вают промежуточными. В зависимости от конкретного назначе­ния преобразователя в целом и вида преобразуемой физической величины ФП и МП в структуре могут и отсутствовать. В ряде случаев их функции выполняют звенья ПП и ВП.

Основное уравнение преобразования - зависимость между входной преобразуемой величиной x(t) и выходной yo(t). Эта зависимость иногда называется функцией преобразования. Для иде­ализированного случая - отсутствия каких-либо внешних возму­щающих и дестабилизирующих воздействий, влияющих на пре­образователь, зависимость имеет вид:

yo(t)=Fo.

Измерительные преобразователи

Измерительный преобразователь - техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. ИП или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.) или применяется вместе с каким-либо средством измерений.

По характеру преобразования:

-Аналоговый измерительный преобразователь - измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);

-Аналого-цифровой измерительный преобразователь - измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в цифровой код;

-Цифро-аналоговый измерительный преобразователь - измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.

По месту в измерительной цепи:

-Первичный измерительный преобразователь - измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора;

-Датчик - конструктивно обособленный первичный измерительный преобразователь;

-Детектор - датчик в области измерений ионизирующих излучений;

-Промежуточный измерительный преобразователь - измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.

По другим признакам:

-Передающий измерительный преобразователь - измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;

-Масштабный измерительный преобразователь - измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.

По принципу действия ИП делятся на генераторные и параметрические.


Параметрические преобразователи

Устройства, содержащие не менее двух поверхностей, между которыми действует электрическое поле, называются электростатическими преобразователями (ЭСП). Электрическое поле создается извне приложенным напряжением или возникает при действии на вход преобразователя измерительного сигнала.

1. Преобразователи, в которых электрическое поле создается приложенным напряжением, составляют группу емкостных преобразователей . Основным элементом в этих преобразователях является конденсатор переменной емкости, изменяемой входным измерительным сигналом.

Электростатический преобразователь

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = C U ). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой:

Где - относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице), - электрическая постоянная, численно равная Ф/м (эта формула справедлива, лишь когда d много меньше линейных размеров пластин).

Изменение любого из этих параметров изменяет емкость конденсатора.

Конструкция емкостного датчика проста, он имеет малые массу и размеры. Его подвижные электроды могут быть достаточно жесткими, с высокой собственной частотой, что дает возможность измерять быстропеременные величины. Емкостные преобразователи можно выполнять с заданной (линейной или нелинейной) функцией преобразования. Для получения требуемой функции преобразования часто достаточно изменить форму электродов. Отличительной особенностью является малая сила притяжения электродов.

Основным недостатком емкостных преобразователей является малая их емкость и высокое сопротивление. Для уменьшения последнего преобразователи питаются напряжением высокой частоты. Однако это обусловливает другой недостаток - сложность вторичных преобразователей. Недостатком является и то, что результат измерения зависит от изменения параметров кабеля. Для уменьшения погрешности измерительную цепь и вторичный прибор располагают вблизи датчика.

Пример применения: Ёмкостный сенсорный экран в общем случае представляет собой стеклянную панель, на которую нанесён слой прозрачного резистивного материала. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение. Поскольку тело человека способно проводить электрический ток и обладает некоторой ёмкостью, при касании экрана в системе появляется утечка. Место этой утечки, то есть точку касания, определяет простейший контроллер на основе данных с электродов по углам панели.

2. Резистивными называют преобразователи, в которых переносчиком измерительной информации является электрическое сопротивление. Резистивные преобразователи составляют две большие группы: электрические и механоэлектрические. В основу принципа преобразования электрических резистивных преобразователей (шунтов, добавочных резисторов, резистивных делителей и т. п.) положена зависимость между напряжением, током и электрическим сопротивлением, определяемая законом Ома, и зависимость электрического сопротивления проводника от его длины, удельного сопротивления.


Принцип работы механоэлектрических резистивных преобразователей (например, реостатных) основан на изменении электрического сопротивления под действием входной преобразуемой механической величины. К резистивным преобразователям часто относят и тензорезисторы, принцип действия которых основан на изменении электрического сопротивления различных материалов под действием механической деформации. Тензорезисторы могут измерять и преобразовать разнообразные физические величины в электрические сигналы и широко применяются в датчиках силы, давления, перемещения, ускорения или вращающего момента. В качестве материалов таких преобразователей используются проводники с проволочными и фольговыми чувствительными элементами или полупроводники. В последнее время для построения тензопреобразователей стали применять эффекты изменения характеристик р-п переходов под давлением механического воздействия (тензодиоды и тензотранзисторы).

3. Электромагнитные преобразователи составляют очень большую и разнообразную по принципу действия и по назначению группу преобразователей, объединенных общностью теории, принципа преобразования, основанного на использовании электромагнитных явлений.

Это масштабные электромагнитные преобразователи (измерительные трансформаторы, индуктивные делители напряжения и тока), индуктивные трансформаторные и автотрансформаторные преобразователи неэлектрических величин, а также индуктивные и индукционные преобразователи.

4. Генераторные преобразователи (датчики) выдают на выход измеритель-ный сигнал за счет собственной внутренней энергии и не нуждаются в каких-либо внешних источниках. Характерным примером такого рода датчика может служить датчик скорости вращения типа тахогенератора. Развиваемая тахогенератором ЭДС может быть пропорциональной скорости вращения его ротора.

К генераторным датчикам относятся:

- термоэлектрические;

- индукционные;

- пьезоэлектрические;

- фотоэлектрические.

Основные параметры датчиков

Статическая характеристика датчика представляет собой зависимость изменения выходной величины от входной величины

y=f(x)

Чувствительность датчика - отношение приращения выходной величины к приращению входной величины

S = Ay/Ax

Порог чувствительности датчика - наименьшее значение входной величины, которое вызывает появление сигнала на выходе.

Инерционность датчика - время, в течение которого выходная величина принимает значение, соответствующее входной величине.

испытание кузов автомобиль надежность

Измерительный преобразователь -- техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. Измерительный преобразователь или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы) или применяется вместе с каким-либо средством измерений.

По характеру преобразования различают следующие преобразователи:

Аналоговый измерительный преобразователь -- это измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);

Аналого-цифровой измерительный преобразователь -- это измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в числовой код;

Цифро-аналоговый измерительный преобразователь -- это измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.

По месту в измерительной цепи различают следующие преобразователи:

Первичный измерительный преобразователь -- это измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора;

Датчик -- это конструктивно обособленный первичный измерительный преобразователь;

Детектор -- это датчик в области измерений ионизирующих излучений;

Промежуточный измерительный преобразователь -- измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.

Передающий измерительный преобразователь -- измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;

Масштабный измерительный преобразователь -- измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.

По принципу действия преобразователи делятся на генераторные и параметрические.

Генераторные - это такие преобразователи, которые под действием входной величины сами генерируют электрическую энергию (с выходной величиной - напряжение, или ток). Генераторные измерительные преобразователи могут включаться в измерительную цепь, где отсутствует источник энергии. Примерами генераторных измерительных преобразователей являются термоэлектрические и фотоэлектрические измерительные преобразователи.

Параметрические - это такие преобразователи, которые под действием измеряемой величины изменяют значение выходной величины в зависимости от принципа действия (с выходной величиной в виде изменения сопротивления, емкости и в зависимости от значения входной величины), к ним относятся терморезистивные, емкостные измерительные преобразователи.

По физической закономерности, на которой основано действие преобразователя, все измерительные преобразователи можно разделить на следующие группы:

Резистивные;

Тепловые;

Электромагнитные;

Электростатические;

Электрохимические;

Пьезоэлектрические;

Фотоэлектрические;

Электронные;

Квантовые.

Рассмотрим некоторые группы измерительных преобразователей подробнее.

Резистивные измерительные преобразователи в настоящее время являются самыми распространенными. Принцип действия основан на изменении их электрического сопротивления при изменении входной величины.

Рисунок 1. - Схема резистивного измерительного преобразователя

При построении резистивного измерительного преобразователя стремятся к тому, чтобы изменение сопротивления R происходило под действием одной входной величины (реже двух).

К достоинствам данного преобразователя относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Электромагнитные измерительные преобразователи - такие преобразователи составляют большую группу преобразователей для измерения различных физических величин и в зависимости от принципа действия бывают параметрическими и генераторными.

К параметрическим относятся преобразователи, в которых преобразуется выходное механическое воздействие в изменение параметров магнитной цепи - магнитной проницаемости, магнитного сопротивления RМ, индуктивность обмотки L.

К генераторным - преобразователи индукционного типа, использующие закон электромагнитной индукции для получения выходного сигнала. Они могут быть выполнены на базе трансформаторов и электрических машин. Последняя группа - это тахогенераторы, сельсины, поворотные трансформаторы.

Значения L и М можно изменять, уменьшая или увеличивая зазор, изменяя положение якоря, изменяя сечение S магнитного потока, поворачивая якорь относительно неподвижной части магнитной цепи, вводя в воздушный зазор пластину из ферромагнитного материала, соответственно уменьшая 0 и магнитное сопротивление зазора.

Измерительные преобразователи, преобразующие естественную входную величину в виде перемещения в изменение индуктивности называют индуктивными.

Преобразователи, преобразующие перемещение в изменение взаимоиндуктивности М, принято называть трансформаторными.

Рисунок 2 - Схема измерительного преобразователя основанного на изменении магнитного сопротивления

В трансформаторных преобразователях изменение взаимоиндуктивности М можно получить не только при изменении магнитного сопротивления, но и при перемещении одной из обмоток вдоль или поперек магнитной цепи.

Если к замкнутой магнитной цепи преобразователя приложить сжимающие, растягивающие или скручивающие усилия, то под их воздействием изменится магнитная проницаемость 0 сердечника, что приведет к изменению магнитного сопротивления сердечника и соответственно к изменению L или М.

Преобразователи, основанные на изменении магнитного сопротивления, обусловленного изменением магнитной проницаемости ферромагнитного сердечника под воздействием механической деформации, называются магнитоупругими. Их широко применяют для измерения сил, давлений, моментов.

Если в зазоре постоянного магнита, или электромагнита, через обмотку которого пропускается постоянный ток, перемещать обмотку, то согласно закону электромагнитной индукции в обмотке появляется ЭДС, равная

где - скорость изменения магнитного потока, сцепляющегося с витками обмотки W.

Поскольку скорость изменения магнитного потока определяется скоростью перемещения обмотки в воздушном зазоре, то преобразователь имеет естественную входную величину в виде скорости линейных или угловых перемещений, а выходная в виде индуктируемой ЭДС. Такие преобразователи называют индукционными.

Пьезоэлектрические преобразователи - принцип действия таких датчиков основан на использовании прямого и обратного пьезоэлектрического эффекта.

Прямой эффект представляет собой способность некоторых материалов образовывать электрические заряды на поверхности при приложении механической нагрузки.

Обратный эффект - в изменении механического напряжения или геометрических размеров образует материала под воздействием электрического поля.

В качестве пьезоэлектрических материалов используют естественный материал - кварц, турмалин, а также искусственно поляризованную керамику на основе титанита бария, титанита свинца и цирконата свинца.

Количественно пьезоэффект оценивается пьезомодулем Кd, устанавливающем зависимость между возникающим зарядом Q и приложенной силой F, который можно выразить формулой:

Рассмотрим еще один тип измерительного преобразователя тепловые преобразователи.

Их принцип действия основан на использовании тепловых процессов (нагрева, охлаждения, теплообмена) и входной величиной таких датчиков является температура.

Однако они применяются как преобразователи не только температуры, но и таких величин, как тепловой поток, скорость потока газа, влажность, уровень жидкости.

При построении тепловых преобразователей наиболее часто используют такие явления, как возникновение термо-ЭДС, зависимость сопротивления вещества от температуры.

Термопара представляет собой чувствительный элемент, состоящий из двух разных проводников или полупроводников, соединенных электрически, и преобразующий контролируемую температуру в ЭДС.

Принцип действия термоэлектрического преобразователя основан на использовании термоэлектродвижущей силы, возникающей в контуре из двух разнородных проводников, места соединения (спаи) которых нагреты до различных температур.

Знак и значение термо-ЭДС в цепи зависят от типа материала и разности температур в местах спаев.

При небольшом перепаде температур между спаями термо-ЭДС можно считать пропорциональной разности температур:

С помощью термопары можно определять температуру.

В качестве материалов для термопар используют различные драгоценные металлы (платину, золото, иридий, родий и их сплавы), а также неблагородные металла (сталь, никель, хром, сплавы нихрома).

Сравнительно редко применяют термопары из кремния и селена (полупроводники), они имеют малую механическую прочность, обладают большим внутренним сопротивлением, хотя и обеспечивают большую термо-ЭДС по сравнению с металлами.

Термо-ЭДС возникает только в спаях разнородных материалов. При сравнении различных материалов в качестве базовой принимают термо-ЭДС платины, по отношению к которой определяют термо-ЭДС других материалов.

Для повышение выходной ЭДС используют последовательное включение термопар, образующее термобатарею.

Достоинства термопар - возможность измерений в большом диапазоне температур; простота устройства; надежность в эксплуатации.

Недостатки - не высокая чувствительность, большая инерционность, необходимость поддержания постоянной температуры свободных спаев.

Терморезисторные преобразователи работают на основе свойства проводника или полупроводника изменять свое электрическое сопротивление при изменении температуры.

Для таких датчиков используют материалы, обладающие высокой стабильностью, высокой воспроизводимостью электрического сопротивления при данной температуре, значительным удельным сопротивлением, стабильностью химических и физических свойств при нагревании, инертностью к воздействию исследуемой среды.

К таким материалам в первую очередь относятся платина, медь, никель, вольфрам. Наиболее распространены платиновые и медные терморезисторы.

Платиновые терморезисторы используют в диапазоне от 0 до 6500 С; от 0 до - 2000 С. Их недостаток - теряет стабильность характеристик, и возрастает хрупкость материала при высоких температурах.

Медные терморезисторы используются в диапазоне температур от 50 до 1800С, они довольно стойки к коррозии, дешевы.

Их недостатки: высокая окисляемость при нагревании, вследствие чего их применяют в сравнительно узком диапазоне температур в средах с низкой влажностью и при отсутствии агрессивных газов.

Полупроводниковые терморезисторы отличаются от металлических меньшими размерами и инерционностью. Недостаток - нелинейная зависимость сопротивления от температуры.

Терморезисторы обычно применяют для измерения температуры. При этом нагрузочный ток, проходящий через них должен быть мал. Если этот ток будет велик, то перегрев терморезистора по отношению к окружающей среде может стать значительным. Установившее значение перегрева и соответственно сопротивление при этом будет определяться условиями теплоотдачи поверхности терморезистора.

Рисунок 3 - Общий вид термоэлектрического преобразователя

Если нагретый терморезистор поместить в среду с переменными теплофизическими характеристиками, то появляется возможность измерения ряда физических величин: скорости потока жидкости и газов, плотности газов.

Чувствительность проволочных медных терморезисторов постоянна, а чувствительность платиновых изменяется с изменением температуры. При одинаковых значениях R 0 чувствительность медных терморезисторов выше.

Диапазон измеряемых температур с помощью терморезисторами с платиновыми и медными чувствительными элементами от - 200 до + 1100 0 С.

При измерении высоких температур применяются бесконтактные средства измерений - пирометры, которые измеряют температуру по тепловому излучению. Серийно выпускают пирометры, обеспечивающие измерение температур в диапазоне от 20 до 6000 0 С.

В основе бесконтактного метода измерения температур лежит температурная зависимость излучения абсолютно черного тела, т.е. тела, способного полностью поглощать падающее на него излучение любой длины волны.

Термометры сопротивления.

Термометры сопротивления, как и термопары, предназначены для измерения температуры газообразных, твёрдых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от -200°С до 0°С имеет вид:

R t =R 0 ,

а в области температур от 0 °С до 630 °С

R t =R 0 [ 1+At+Bt 2 ],

гдеR t , R 0 – сопротивление проводника при температуре t и 0 °С;А, В, С – коэффициенты;t – температура, °С.

В диапазоне температур от 0°С до 180°С зависимость сопротивления проводника от температуры описывается приближенной формулой

R t =R 0 [ 1+αt],

где α – температурный коэффициент сопротивления материала проводника (ТКС).

Для проводников из чистого металла α ≈ 6-10 -3 ...4-10 -3 град -1 .

Измерение температуры термометром сопротивления сводится к измерению его сопротивленияR t , с последующим переходом к температуре по формулам или градуировочным таблицам.

Различают проволочные и полупроводниковые термометры сопротивления. Проволочный термометр сопротивления представляет собой тонкую проволоку из чистого металла, закреплённую на каркасе из температуростойкого материала (чувствительный элемент), помещённую в защитную арматуру (рисунок 6.4).

Рисунок 6.4 – Чувствительный элемент термометра сопротивления

Выводы от чувствительного элемента подведены к головке термометра. Выбор для изготовления термометров сопротивления проволок из чистых металлов, а не сплавов, обусловлен тем, что ТКС чистых металлов больше, чем ТКС сплавов и, следовательно, термометры на основе чистых металлов обладают большей чувствительностью.

Промышленностью выпускаются платиновые, никелевые и медные термометры сопротивления. Для обеспечения взаимозаменяемости и единой градуировки термометров стандартизованы величины их сопротивления R 0 и ТКС.

Полупроводниковые термометры сопротивления (термисторы) представляют собой бусинки, диски или стержни из полупроводникового материала с выводами для подключения в измерительную цепь.

Промышленность серийно выпускает множество типов термисторов в различном конструктивном оформлении.

Размеры термисторов, как правило, малы – около нескольких миллиметров, а отдельные типы десятых долей миллиметра. Для предохранения от механических повреждений и воздействия среды термисторы защищаются покрытиями из стекла или эмали, а также металлическими чехлами.

Термисторы обычно имеют сопротивление от единиц до сотен килоом; их ТКС в рабочем диапазоне температур на порядок больше, чем у проволочных термометров. В качестве материалов для рабочего тела термисторов используют смеси оксидов никеля, марганца, меди, кобальта, которые смешивают со связующим веществом, придают ему требуемую форму и спекают при высокой температуре. Применяют термисторы для измерения температур в диапазоне от -100 до 300°С. Инерционность термисторов сравнительно невелика. К числу их недостатков следует отнести нелинейность температурной зависимости сопротивления, отсутствие взаимозаменяемости из-за большого разброса номинального сопротивления и ТКС, а также необратимое изменение сопротивления во времени.

Для измерения в области температур, близких к абсолютному нулю, применяются германиевые полупроводниковые термометры.

Измерение электрического сопротивления термометров производится с помощью мостов постоянного и переменного тока или компенсаторов. Особенностью термометрических измерений является ограничение измерительного тока с тем, чтобы исключить разогрев рабочего тела термометра. Для проволочных термометров сопротивления рекомендуется выбрать такой измерительный ток, чтобы мощность, рассеиваемая термометром, не превышала 20...50мВт. Допустимая рассеиваемая мощность в термисторах значительно меньше и её рекомендуется определять экспериментально для каждого термистора.

Тензочувствительные преобразователи (тензорезисторы).

В конструкторской практике часто необходимы измерения механических напряжений и деформаций в элементах конструкций. Наиболее распространенными преобразователями этих величин в электрический сигнал являются тензорезисторы. В основе работы тензорезисторов лежит свойство металлов и полупроводников изменять свое электрическое сопротивление под действием приложенных к ним сил. Простейшим тензорезистором может быть отрезок проволоки, жёстко сцепленный с поверхностью деформируемой детали. Растяжение или сжатие детали вызывает пропорциональное растяжение или сжатие проволоки, в результате чего изменяется её электрическое сопротивление. В пределах упругих деформаций относительное изменение сопротивления проволоки связано с её относительным удлинением соотношением:

ΔR/R = K T Δl/l,

где l , R – начальные длина и сопротивление проволоки; Δl , ΔR – приращение длины и сопротивления; К T – коэффициент тензочувствительности.

Величина коэффициента тензочувствительности зависит от свойств материала, из которого изготовлен тензорезистор, а также от способа крепления тензорезистора к изделию. Для металлических проволок из различных металлов K T = 1... 3,5.

Различают проволочные и полупроводниковые тензорезисторы. Для изготовления проволочных тензорезисторов применяются материалы, имеющие достаточно высокий коэффициент тензочувствительности и малый температурный коэффициент сопротивления. Наиболее употребительным материалом для изготовления проволочных тензорезисторов является константановая проволока диаметром 20...30 мкм.

Конструктивно, проволочные тензорезисторы представляют собой решётку, состоящую из нескольких петель проволоки, наклеенных на тонкую бумажную (или иную) подложку (рисунок 6.5). В зависимости от материала подложки тензорезисторы могут работать при температурах от -40 до +400°С.

Рисунок 6.5 – Тензометр

Существуют конструкции тензорезисторов, прикрепляемых к поверхности деталей с помощью цементов, способные работать при температурах до 800°С.

Основными характеристиками тензорезисторов являются номинальное сопротивление R , база l и коэффициент тензочувствительности К T Промышленностью выпускается широкий ассортимент тензорезисторов с величиной базы от 5 до 30 мм, номинальными сопротивлениями от 50 до 2000 Ом, с коэффициентом тензочувствительности 2±0,2.

Дальнейшим развитием проволочных тензорезисторов являются фольговые и пленочные тензорезисторы, чувствительным элементом которых являются решётка из полосок фольги или тончайшая металлическая пленка, наносимые на подложки на лаковой основе.

Тензорезисторы выполняются, на основе полупроводниковых материалов. Наиболее сильно тензоэффект выражен у германия, кремния и др. Основным отличием полупроводниковых тензорезисторов от проволочных является большое (до 50%) изменение сопротивления при деформации благодаря большой величине коэффициента тензочувствительности.

Индуктивные преобразователи.

Индуктивные преобразователи применяются для измерения перемещений, размеров, отклонений формы и расположения поверхностей. Преобразователь состоит из неподвижной катушки индуктивности с магнитопроводом и якоря, также являющегося частью магнитопровода, перемещающегося относительно катушки индуктивности. Для получения возможно большей индуктивности магнитопровод катушки и якорь выполняются из ферромагнитных материалов. При перемещении якоря (связанного, например, со щупом измерительного устройства) изменяется индуктивность катушки и, следовательно, изменяется ток, протекающий в обмотке. На рисунке 6.6 приведены схемы индуктивных преобразователей с переменным воздушным зазором δ (рисунок 6.6а ) применяемых для измерения перемещения в пределах 0,01...10мм; с переменной площадью воздушного зазора S 0 (рисунок 6.6б ), применяемых в диапазоне 5...20мм.

Рисунок 6.6 – Индуктивные преобразователи перемещений

6.2. Операционные усилители

Операционный усилитель (ОУ) - это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления. Для усилителя напряжения передаточная функция (коэффициент усиления) определяется выражением

Для упрощения конструкторских расч`тов предполагается, что идеальный ОУ имеет следующие характеристики:

1 Коэффициент усиления при разомкнутой петле обратной связи равен бесконечности.

2 Входное сопротивление R d равно бесконечности.

3 Выходное сопротивление R o = 0.

4 Ширина полосы пропускания равна бесконечности.

5 V o =0 при V 1 =V 2 (отсутствует напряжение смещения нуля). Последняя характеристика очень важна. Так как V1-V2 = Vo/А , то если Vo имеет конечное значение, а коэффициент А бесконечно велик (типичное значение 100000) будем иметь

V 1 - V 2 = 0 и V 1 = V 2 .

Поскольку входное сопротивление для дифференциального сигнала – (V 1 - V 2 ) также очень велико, то можно пренебречь током через R d .Эти два допущения существенно упрощают разработку схем на ОУ.

Правило 1. При работе ОУ в линейной области на двух его входах действуют одинаковые напряжения.

Правило 2. Входные токи для обоих входов ОУ равны нулю.

Рассмотрим базовые схемные блоки на ОУ. В большинстве этих схем ОУ используется в конфигурации с замкнутой петлей обратной связи.

6.2.1. Усилитель с единичным коэффициентом усиления (повтoриmель напряжения)

Если в неинвертирующем усилителе положить Ri равным бесконечности, a Rf равным нулю, то мы придем к схеме, изображенной на рисунок 6.7.

Рисунок 6.7 – Повторитель напряжения

Согласно правилу 1, на инвертирующем входе ОУ тоже действует входное напряжение V i , которое непосредственно передаётся на выход схемы. Следовательно, V o = V i , и выходное напряжение отслеживает (повторяет) входное напряжение. У многих аналого-цифровых преобразователей входное сопротивление зависит от значения аналогичного входного сигнала. С помощью повторителя напряжения обеспечивается постоянство входного сопротивления.

6.2.2. Сумматоры

Инвертирующий усилитель может суммировать несколько входных напряжений. Каждый вход сумматора соединяется с инвертирующим входом ОУ через взвешивающий резистор. Инвертирующий вход называется суммирующим узлом, поскольку здесь суммируются все входные токи и ток обратной связи. Базовая принципиальная схема суммирующего усилителя представлена на рисунке 6.8.

Как и в обычном инвертирующем усилителе, напряжение на инвертирующем входе должно быть равно нулю, следовательно, равен нулю и ток, втекающий в ОУ. Таким образом,

Рисунок 6.8 – Базовая принципиальная схема суммирующего усилителя

Так как на инвертирующем входе действует нулевое напряжение, то после соответствующих подстановок, получаем:

Резистор R f определяет общее усиление схемы. Сопротивления R 1 , R 2 ,...R n задают значения весовых коэффициентов и входных сопротивлений соответствующих каналов.

6.2.3. Интеграторы

Интегратор – это электронная схема, которая вырабатывает выходной сигнал, пропорциональный интегралу (по времени) от входного сигнала.

Рисунок 6.9 – Принципиальная схема аналогового интегратора

На рисунке 6.9 показана принципиальная схема простого аналогового интегратора. Один вывод интегратора присоединён к суммирующему узлу, а другой – к выходу интегратора. Следовательно, напряжение на конденсаторе одновременно является выходным напряжением. Выходной сигнал интегратора не удается описать простой алгебраической зависимостью, поскольку при фиксированном входном напряжении выходное напряжение изменяется со скоростью, определяемом параметрами V i , R и С . Таким образом, для того, чтобы найти выходное напряжение, нужно знать длительность действия входного сигнала. Напряжение на первоначально разряжённом конденсаторе:

где i f - через конденсатор и t i - время интегрирования. Для положительного V i имеем i f = V i /R . Поскольку i f = i i то с учетом инверсии сигнала получаем:

Из этого соотношения следует, что V o определяется интегралом (с обратным знаком) от входного напряжения в интервале от 0 до t i , умноженным на масштабный коэффициент 1/. Напряжение V ic – это напряжение на конденсаторе в начальный момент времени (t = 0).

6.2.4. Дифференциаторы

Дифференциатор вырабатывает выходной сигнал, пропорциональный скорости изменения во времени входного сигнала. На рисунке 6.10 показана принципиальная схема простого дифференциатора.

Рисунок 6.10 – Принципиальная схема дифференциатора

Ток через конденсатор равен:

Если производная dV i /dt положительна, ток i i течет в таком направлении, что формируется отрицательное выходное напряжение V o . Таким образом,

Этот метод дифференцирования сигнала кажется простым, но при его практической реализации возникают проблемы с обеспечением устойчивости схемы на высоких частотах. Не всякий ОУ пригоден для использования в дифференциаторе. Критерием выбора является быстродействие ОУ: нужно выбирать ОУ с высокой максимальной скоростью нарастания выходного напряжения и высоким значением произведения коэффициента усиления на ширину полосы. Хорошо работают в дифференциаторах быстродействующие ОУ на полевых транзисторах.

6.2.5. Компараторы

Компаратор - это электронная схема, которая сравнивает два входных напряжения и вырабатывает выходной сигнал, зависящий от состояния входов. Базовая принципиальная схема компаратора показана на рисунке 6.11.

Рисунок 6.11 – Принципиальная схема компаратора

Как видим, здесь ОУ работает с разомкнутой петлей обратной связи. На один из его входов подаётся опорное напряжение, на другой – неизвестное (сравниваемое) напряжение. Выходной сигнал компаратора указывает: выше или ниже уровня опорного напряжения находится уровень неизвестного входного сигнала. В схеме на рисунке 6.11 опорное напряжение V r подаётся на неинвертирующий вход, а на инвертирующий вход поступает неизвестный сигнал V i .

При V i > V r на выходе компаратора устанавливается напряжение V 0 =-V r (отрицательное напряжение насыщения). В противоположном случае получаем V 0 = +V r . Можно поменять местами входы – это приведёт к инверсии выходного сигнала.

6.3. Коммутация измерительных сигналов

В информационно-измерительной технике при реализации аналоговых измерительных преобразований часто приходится осуществлять электрические соединения между двумя и более точками измерительной схемы с целью вызвать необходимый переходный процесс, рассеять запасённую реактивным элементом энергию (например, разрядить конденсатор), подключить источник питания измерительной цепи, включить ячейку аналоговой памяти, взять выборку непрерывного процесса при дискретизации и т.д. Кроме того, многие измерительные средства осуществляют измерительные преобразования последовательно над большим числом электрических величин, распределённых в пространстве. Для реализации сказанного используются измерительные коммутаторы и измерительные ключи.

Измерительным коммутатором называется устройство, которое преобразует пространственно разнесённые аналоговые сигналы в сигналы, разделённые во времени, и наоборот.

Измерительные коммутаторы аналоговых сигналов характеризуются следующими параметрами:

- динамическим диапазоном коммутируемых величин; погрешностью коэффициента передачи;

Быстродействием (частотой переключенийи или временем, необходимым для выполнения одной коммутационной операции); числом коммутируемых сигналов;

Предельным числом переключений (для коммутаторов с контактными измерительными ключами).

В зависимости от типа используемых в коммутаторе измерительных ключей различаются контактные и бесконтактные коммутаторы. Измерительный ключ представляет собой двухполюсник с явно выраженной нелинейностью вольт-амперной характеристики. Переход ключа из одного состояния (закрытого) в другое (открытое) выполняется с помощью управляющего элемента.

6.4. Аналого-цифровое преобразование

Аналого-цифровое преобразование составляет неотъемлемую часть измерительной процедуры. В показывающих приборах эта операция соответствует считыванию числового результата экспериментатором. В цифровых и процессорных измерительных средствах аналого-цифровое преобразование выполняется автоматически, а результат либо поступает непосредственно на индикацию, либо вводится в процессор для выполнения последующих измерительных преобразований в числовой форме.

Методы аналого-цифрового преобразования в измерениях разработаны глубоко и основательно и сводятся к представлению мгновенных значений входного воздействия в фиксированные моменты времени соответствующей кодовой комбинацией (числом). Физическую основу аналого-цифрового преобразования составляет стробирование и сравнение с фиксированными опорными уровнями. Наибольшее распространение получили АЦП поразрядного кодирования, последовательного счёта, следящего уравновешивания и некоторые другие. К вопросам методологии аналого-цифрового преобразования, которые связаны с тенденциями развития АЦП и цифровых измерений на ближайшие годы относятся, в частности:

Устранение неоднозначности считывания в наиболее быстродействующих АЦП сопоставления, получающих всё большее распространение с развитием интегральной технологии;

Достижение устойчивости к сбоям и улучшение метрологических характеристик АЦП на основе избыточной системы счисления Фибоначчи;

Применение для аналого-цифрового преобразования метода статистических испытаний.

6.4.1 Цифровые, аналоговые и аналого-цифровые преобразователи

Цифроаналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП) являются неотъемлемой частью автоматических систем контроля управления и регулирования. Кроме того, поскольку подавляющее большинство измеряемых физических величин являются аналоговыми, а их обработка индикация и регистрация, как правило, осуществляются цифровыми методами, ЦАП и АЦП нашли широкое применение в автоматических средствах измерений. Так, ЦАП и АЦП входят в состав цифровых измерительных приборов (вольтметров, осциллографов, анализаторов спектра, корреляторов и т.п.), программируемых источников питания, дисплеев на электроннолучевых трубках, графопостроителей, радиолокационных систем установок для контроля элементов и микросхем, являются важными компонентами различных преобразователей и генераторов, устройств ввода-вывода информации ЭВМ. Широкие перспективы применения ЦАП и АЦП открываются в телеметрии и телевидении. Серийный выпуск малогабаритных и относительно дешёвых ЦАП и АЦП даст возможность ещё более широкого использования методов дискретно непрерывного преобразования в науке и технике.

Существует три разновидности конструктивно технологического исполнения ЦАП и АЦП: модульное , гибридное и интегральное .

При этом доля производства интегральных схем (ПС) ЦАП и АЦП в общем объёме их выпуска непрерывно возрастает, чему в значительной степени способствует широкое распространение микропроцессоров и методов цифровой обработки данных.

ЦАП – устройство, которое создаёт на выходе аналоговый сигнал (напряжение или ток), пропорциональный входному цифровому сигналу. При этом значение выходного сигнала зависит от значения опорного напряжения U on , определяющего полную шкалу выходного сигнала. Если в качестве опорного напряжения использовать какой-либо аналоговый сигнал, то выходной сигнал ЦАП будет пропорционален произведению входных цифрового и аналогового сигналов. В АЦП цифровой код на выходе определяется отношением преобразуемого входного аналогового сигнала к опорному сигналу, соответствующему полной шкале. Это соотношение выполняется и в том случае, если опорный сигнал изменяется по какому-либо закону. АЦП можно рассматривать как измеритель отношений или делитель напряжений с цифровым выходом.

6.4.2. Принципы действия, основные элементы и структурные схемы АЦП

В настоящее время разработано большое количество типов АЦП, удовлетворяющее разнообразным требованиям. В одних случаях преобладающим требованием является высокая точность, в других – скорость преобразования.

По принципу действия все существующие типы АЦП можно разделить на две группы:

ü АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений;

ü АЦП интегрирующего типа.

В АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений используется процесс преобразования, сущность которого заключается в формировании напряжения с уровнями, эквивалентными соответствующим цифровым кодам, и сравнении этих уровней напряжения с входным напряжением с целью определения цифрового эквивалента входного сигнала. При этом уровни напряжения могут формироваться одновременно, последовательно или комбинированным способом.

АЦП последовательного счёта со ступенчатым пилообразным напряжением является одним из простейших преобразователей (рисунок 6.12).

Рисунок 6.12 – Структурная схема АЦП последовательного счёта

СС – схема сравнения; Сч – счётчик импульсов; РП – регистр памяти; ЦАП – цифро-аналоговый преобразователь.

По сигналу "Пуск" счётчик устанавливается в нулевое состояние, после чего по мере поступления на его вход тактовых импульсов с частотой f T линейно-ступенчато возрастает выходное напряжение ЦАП. При достижении напряжением U вых значения U вх схема сравнения прекращает подсчёт импульсов в счётчике С ч, а код с выходов последнего заносится в регистр памяти. Разрядность и разрешающая способность таких АЦП определяется разрядностью и разрешающей способностью используемого в его составе ЦАП. Время преобразования зависит от уровня входного преобразуемого напряжения. Для входного напряжения, соответствующего значению полной шкалы, С ч должен быть заполнен и при этом он должен сформировать на входе ЦАП код полной шкалы. Это требует для 11-разрядного ЦАП времени преобразования в (2 n -1) раз больше периода тактовых импульсов. Для быстрого аналого-цифрового преобразования использование подобных АЦП нецелесообразно.

В следящем АЦП (рисунок 6.13) суммирующий С ч заменен на реверсивный счетчик РС ч, чтобы отслеживать изменяющееся входное напряжение. Выходной сигнал КН определяет направление счёта в зависимости от того превышает или нет входное напряжение АЦП выходное напряжение ЦАП.

Рисунок 6.13 – Структурная схема АЦП следящего типа

Перед началом измерений РС ч устанавливается в состояние, соответствующее середине шкалы (01...1). Первый цикл преобразования следящего АЦП аналогичен циклу преобразования в АЦП последовательного счёта. В дальнейшем циклы преобразования существенно сокращаются, так как данный АЦП успевает отследить малые отклонения входного сигнала за несколько тактовых периодов, увеличивая или уменьшая число импульсов, записанное в РС ч, в зависимости от знака рассогласования текущего значения преобразуемого напряжения U вх и выходного напряжения ЦАП.

АЦП последовательного приближения (поразрядного уравновешивания) нашли наиболее широкое распространение в силу достаточно простой их реализации при одновременном обеспечении высокой разрешающей способности, точности и быстродействия, имеют несколько меньшее быстродействие, но существенно большую разрешающую способность в сравнении с АЦП, реализующими метод параллельного преобразования (рисунок 6.14).

Для повышения быстродействия в качестве управляющего устройства используется распределитель импульсов РИ и регистр последовательного приближения. Сравнение входного напряжения с опорным (напряжением обратной связи ЦАП) ведется, начиная с величины, соответствующей старшему разряду формируемого двоичного кода.

При пуске АЦП с помощью РИ устанавливается в исходное состояние РПП: 1000...0. При этом на выходе ЦАП формируется напряжение, соответствующее половине диапазона преобразования, что обеспечивается включением его старшего разряда.

Рисунок 6.14 – Структурная схема АЦП поразрядного уравновешивания

СС – схема сравнения: Т – триггер, РПП – регистр последовательного приближения; РИ – распределитель импульсов.

Если входной сигнал меньше, чем сигнал от ЦАП, в следующем такте с помощью РПП на цифровых входах ЦАП формируется код 0100...0, что соответствует включению 2-го по старшинству разряда. В результате выходной сигнал ЦАП уменьшается вдвое.

Если входной сигнал превышает сигнал от ЦАП, в очередном такте обеспечивается формирование кода 0110...0 на цифровых входах ЦАП и включение дополнительного 3-го разряда. При этом выходное напряжение ЦАП, возросшее в полтора раза, вновь сравнивается с входным напряжением и т.д. Описанная процедура повторяется n раз (где n – число разрядов АЦП).

В результате на выходе ЦАП сформируется напряжение, отличающееся от входного не более, чем на единицу младшего разряда ЦАП. Результат преобразования снимается с выхода РПП.

Достоинством данной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразователей сравнительно высокого быстродействия (с временем преобразования порядка несколько сот наносекунд).

В АЦП непосредственного считывания (параллельного типа) (рисунке 6.15) входной сигнал одновременно прикладывается ко входам всех КН, число т которых определяется разрядностью АЦП и равно m = 2 n -1, где n -число разрядов АЦП. В каждом КН сигнал сравнивается с опорным напряжением, соответствующем весу определенного разряда и снимаемым с узлов резисторного делителя, питаемого от ИОН.

Выходные сигналы КН обрабатываются логическим дешифратором, вырабатывающим параллельный код, являющийся цифровым эквивалентом входного напряжения. Подобные АЦП обладают самым высоким быстродействием. Недостаток таких АЦП заключается в том, что с ростом разрядности количество требуемых элементов практически удваивается, что затрудняет построение многоразрядных АЦП подобного типа. Точность преобразования ограничивается точностью и стабильностью КН и резисторного делителя. Чтобы увеличить разрядность при высоком быстродействии реализуют двухкаскадные АЦП, при этом с выходов второй ступени Дш снимаются младшие разряды выходного кода, а с выходов Дш первой ступени – старшие разряды.

Рисунок 6.15 – Структурная схема параллельного АЦП

АЦП с модуляцией длительности импульса (однотактный интегрирующий )

АЦП характеризуется тем, что уровень входного аналогового сигнала U вх преобразуется в импульс, длительность которого t имп является функцией значения входного сигнала и преобразуется в цифровую форму с помощью подсчёта числа периодов опорной частоты, которые укладываются между началом и концом импульса. Выходное напряжение интегратоpa под действием подключённого к его входу U on изменяется от нулевого уровня со скоростью:

В момент, когда выходное напряжение интегратора становится равным входному U вх, КН срабатывает, в результате чего заканчивается формирование длительности импульса, в течение которого в счётчиках АЦП происходит подсчёт числа периодов опорной частоты.

Длительность импульса определяется временем, за которое напряжение U вх изменяется от нулевого уровня до U вх:

Достоинство данного преобразователя заключается в его простоте, а недостатки – в относительно низком быстродействии и низкой точности.

Рисунок 6.15 – Структурная схема однотактного интегрирующего АЦП

Вопросы для контроля усвоения знаний:

1 Какие физические принципы используются в первичных преобразователях?

2 Как классифицируют ИП по виду измеряемой величины?

3 Основные критерии согласования первичных преобразователей с объектом измерения.

4 Структура ИП, принципы действия, функция преобразования и особенности применения.

5 Поясните базовые схемные блоки на операционных усилителях (инвертирующие и неинвертирующие усилители, повторители напряжения и т.д.).

6 Каковы метрологические характеристики аналоговых вычислителей (сумматоров, интеграторов, дифференциаторов)?

7 Измерительные коммутаторы, их характеристики, эквивалентные схемы, обозначения на принципиальных схемах.

8 Реализация аналого-цифрового преобразования в АЦП последовательного счета.

9 Принципы действия. Основные элементы, структурные схемы и характеристики АЦП и ЦАП.

ЛЕКЦИЯ 16.
Параметрические измерительные преобразователи

Термометры сопротивления .

Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от –200 о С до 0 о С имеет вид:

R t = R 0 ,

а в области температур от 0 о С до 630 о С

R t = R 0 }